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Introduction
Financial institutions are working to improve user trust in their fraud detection 
system. As a result, explainability is becoming a key component in machine 
learning. 

Other challenges :

Frauds adapt to new detection methods and pattern of users evolve with time. 

There is a very small proportion of fraud compared to total transactions.

Fraud detection algorithms should be real time to be efficient.
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Models for fraud detection
There are two types of fraud detection models : expert-driven and data-driven 
models.

● Expert driven models : Set of predefined rules applied to different scenarios.
● Data driven models : Statistical methods or machine learning algorithms.

Possible machine learning algorithms : Artificial neural networks and random 
forests lead to best results, with random forests being more interpretable.

Models used for the study :

● Random Forest ( from Scikit-learn → split=0.2, max_depth=8, random_state=40)

● Neural Network ( provided by Lusis)
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Random Forest
Accuracy : 94%

False discovery rate : 5,3%

6

Confusion Matrix

Actual

Fraud Non Fraud

Predicted

Fraud 4516  253

Non Fraud 6995 110277

Dataset : small dataset (369 821 rows)

Features : 22 basic features

Split train/test : 33%

Model : RandomForestClassifier 
(scikitlearn)

Model parameters : 
- max_depth=5
- random_state=40



Neural Network
Accuracy : 99,7%

False discovery rate : 1,6%
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Dataset : small dataset (369 821 rows)

Features : 20 basic features + 95 derived 
features from mcc and pospayenvcode 
(conversion of categorical variables) 

Split train/test : 33%

Feature engineering : Standardize features 
by removing the mean and scaling to unit 
variance

Model : Lusis NN (2 dense layers + 1 
activation layer)

Confusion Matrix
Actual

Fraud Non Fraud

Predicted
Fraud 11303  181

Non Fraud 208 110349



Explainability
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Explainability - Concept
Explainability: Motivated by the opaqueness of so called “black‐box” 
approaches it is the ability to provide an explanation on why a machine 
decision has been reached.
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Goal of Explainability
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Goal of Explainability
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Approaches for explainability
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There are 4 main ways to explain an AI model :

- Input Attribution : Explain a model using the input features and 
attributing a weight to each feature (LIME, SHAP, Integrated Gradients)

- Concept testing/extraction : Extracting information from the internal state 
of a model

- Example influence/matching : Using significant example sets to explain a 
model

- Distillation : Learn an explainable model (ex: Decision Tree) from a black 
box



Input attribution : LIME and SHAP
LIME and SHAP are methods used to explain the predictions of a black box 
using a local approximation. 
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Input attribution : LIME and SHAP

14

LIME and SHAP explain the models by tweaking the input and modeling the 
changes in prediction. This new input is still close to the original data point. 

For example, if the model prediction does not change much by tweaking the 
value of a variable, that variable for that particular data point may not be an 
important predictor. 

As a result, LIME and SHAP are model agnostic, which is important to compare 
two different types of classifiers.



LIME
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“Why Should I Trust You?” 
Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin

Two different definitions of trust: 

- Trusting a prediction : LIME (Local Interpretable Model-agnostic 

Explanation)

- Trusting a model : SP-LIME (Submodular Pick - LIME)
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LIME
The criteria of LIME:

- Interpretable : The features used must be understood by humans

- Local fidelity : the explanation must be locally faithful to the model, even if 

it is not globally faithful, which is not always possible 

Advantages:

- Fast : LIME can provide real-time explanations

- Consistent : Sum of the impact of each feature is equal to the total impact
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Drawbacks
- The local approximation is linear, which means 

that the model cannot be explained if it is 
highly non-linear.

- The representations may not be powerful 
enough to explain some behaviors (example : 
Sepia -> Retro)

- Random components may lead to different 
explanations for same input

- It requires some tweaks to work on a 
non-generic model
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SP-LIME
SP-LIME evaluates trust in the model as a 
whole.

The user will inspect a set of instances selected 
during a step call the pick step, this inspection 
will denote the global importance of that 
component in the explanation space.

The set of instances has to be non-redundant 
and achieves the highest coverage. The set 
created, is called the submodular pick.
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LIME - False positive

Random 
Forest

Neural 
Network



Implementation problem
Bug in LIME implementation when we changed the number of explicative 
feature of the output (from 5 to 10 with the neural network)
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SHAP
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Shapley Values - SHAP

The SHAP explainer is based on Shapley values, which can be used in game 
theory. For example, for a company with a set of three employees, the 
Shapley values consider all the ways that adding each employee improved the 
profit compared to not having those employees. 

SHAP value is the contribution of a feature to the difference between the 
actual prediction and the mean prediction. 

Contrary to LIME, SHAP does not assume that the local model is linear, which 
means that calculation is very time expensive as it checks all the possible 
combinations. 
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SHAP pros and cons
The SHAP method has several advantages compared to other explainers:

● Like LIME, it is consistent : the sum of the individual impact is equal to 
the total impact 

● unlike LIME, it there is no linear approximation, so it is more stable and 
accurate

However, the SHAP method is very time consuming. 

The standard, model-agnostic method is implemented in KernelExplainer. 
However, due to its long running time, optimized versions of SHAP have been 
implemented.
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SHAP for random forests
TreeExplainer is optimized for tree-based models. 

We compute with the normalized discounted gain a 95% similarity for 100 
explanations between TreeExplainer and KernelExplainer.

25Global feature importance for TreeExplainer Global feature importance for KernelExplainer



SHAP for neural networks
DeepExplainer is optimized for neural networks.

We compute with the normalized discounted gain a 48% similarity for 100 
explanations between DeepExplainer and KernelExplainer.

26Global feature importance for DeepExplainer Global feature importance for KernelExplainer



SHAP KernelExplainer vs DeepExplainer
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SHAP DeepExplainer
 

SHAP KernelExplainer
 



SHAP Explainers
● TreeExplainer optimisation is based on feature dependence properties 

of tree-based models.

It is faster than KernelExplainer and the explanations are similar on the 
model, so it is the best to use for random forests

● DeepExplainer is a combination of SHAP and DeepLift optimized for 
Neural Network models.

DeepExplainer is faster than KernelExplainer, but the explanations are 
different, so we analyze both further on the neural network
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Computation time
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LIME and SHAP algorithms
LIME and SHAP have 3 computation stages

- Creation of the explainer from training values
- Computation of the explanation for test examples
- Eventual plotting of the values

For LIME, we will plot the creation time of the explainer, as the computation 
time is not evolving while changing parameters.

For SHAP, we will plot the computation time of the values, as it increases while 
changing the parameters.
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SHAP
SHAP computation has 3 stages :

- Creation of the explainer from training values
- Computation of the SHAP values for test examples
- Eventual plotting of the values

We will plot the computation time of the SHAP values, as the creation of the 
explainer is very fast, and the plotting of the values is not recommended for a 
large scale.

Explainers : TreeExplainer for Random Forests and DeepExplainer for NN.
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LIME
LIME computation has 3 stages :

- Creation of the explainer from training values
- Computation of the explanation for the exemple
- Eventual plotting of the values

We will plot the creation time of the explainer, as the computation time is not 
evolving while changing parameters, and the plotting of the values is not 
recommended for a large scale.

32



Random Forests 
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The computation time of an instance does not increase with the size of the 
test set for SHAP and LIME :

LIME mean computing time : 23 ms by instance

SHAP (TreeExplainer) mean computing time : 0.27 ms by instance

Parameters :

● Xtrain = 247780 
● Xtest=122041 
● max_depth=8 
● split = 33%



Random Forests
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Train dataset size
LIME Explainer

Tree depth
SHAP TreeExplainer

 



Neural Network 
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The computation time of an instance does not increase with the size of the 
test set for SHAP and LIME :

LIME mean computing time : 1.6 s by instance

SHAP mean computing time :  DeepExplainer : 70 ms by instance, 
KernelExplainer : 3-6s by instance

Parameters :

● Xtrain = 247780 
● Xtest=122041 
● split = 33%
● features = 115



Number of features
The number of features is also to take into account :

For the neural network with usual parameters:

Using 22 features (without one hot encoding of categorical values) 

→ Computing time by instance for SHAP DeepExplainer : 18 ms (vs 70 ms for 
115 features)  

→ Computing time by instance for LIME : 23 ms (vs 1.63 s for 115 features)

→ Creating time by instance for LIME :  2s (vs 11s for 115 features)
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Usability of LIME and SHAP
● LIME computing time is constant for all the types of execution (except the 

number of features for NN), while the creation time increases with the 
training set size for both models. 

● SHAP explainer creation time is constant, but the computing time 
increases with the size of the model.

● SHAP TreeExplainer is faster than LIME with similar results
● SHAP DeepExplainer is faster than LIME but results are different
● SHAP KernelExplainer cannot be used for real time
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Analyses
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Predictions evaluation
Based on the rules RCS1 - RCS2 - RCB1 - RCB2 - RCB4 we created a score 
between -1 and 1 to assess whether the explanation meets the criteria for the 
creation of the fraud.

Random Forest : 
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Predictions evaluation
Neural network : 
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Here the result for the

Here the result for the



Comparison with a Decision Tree
A decision tree is an explainable model. We compared the decision path to the 
explanation in order to score their similarity.
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Conclusion
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● SHAP seems to be more robust than LIME, and its repo 

is much more active on Github

● Next steps in the study : To create an explainer 

optimised for the neural network in order to have real 

time explanation
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Annexes
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Annexes RF LIME : Confusion matrix
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Vrai positif : 4 516

Faux négatif : 6 995

Faux positif : 253

Vrai négatif : 110 277
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Annexes RF SHAP : Confusion matrix

Vrai positif 
4 516

Faux positif 
253

Faux négatif 
6 995

Vrai négatif 
110 277



Annexes NN LIME : Confusion matrix
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Vrai positif : 11 303

Faux négatif : 208

Faux positif : 181

Vrai négatif : 110 349
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Vrai positif 
11 303

Faux positif 
181

Faux négatif 
208

Vrai négatif 
110 349

Annexes NN SHAP : Confusion matrix
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