
CEI Lusis
Chaire de recherche Lusis:

Détection de fraude au paiement
par carte : étude sur la causalité

Agenda

Fraud detection

Explainability

LIME

SHAP

Computation time

Analyses

2

Fraud Detection

3

Introduction
Financial institutions are working to improve user trust in their fraud detection
system. As a result, explainability is becoming a key component in machine
learning.

Other challenges :

Frauds adapt to new detection methods and pattern of users evolve with time.

There is a very small proportion of fraud compared to total transactions.

Fraud detection algorithms should be real time to be efficient.

4

Models for fraud detection
There are two types of fraud detection models : expert-driven and data-driven
models.

● Expert driven models : Set of predefined rules applied to different scenarios.
● Data driven models : Statistical methods or machine learning algorithms.

Possible machine learning algorithms : Artificial neural networks and random
forests lead to best results, with random forests being more interpretable.

Models used for the study :

● Random Forest (from Scikit-learn → split=0.2, max_depth=8, random_state=40)

● Neural Network (provided by Lusis)
5

Random Forest
Accuracy : 94%

False discovery rate : 5,3%

6

Confusion Matrix

Actual

Fraud Non Fraud

Predicted

Fraud 4516 253

Non Fraud 6995 110277

Dataset : small dataset (369 821 rows)

Features : 22 basic features

Split train/test : 33%

Model : RandomForestClassifier
(scikitlearn)

Model parameters :
- max_depth=5
- random_state=40

Neural Network
Accuracy : 99,7%

False discovery rate : 1,6%

7

Dataset : small dataset (369 821 rows)

Features : 20 basic features + 95 derived
features from mcc and pospayenvcode
(conversion of categorical variables)

Split train/test : 33%

Feature engineering : Standardize features
by removing the mean and scaling to unit
variance

Model : Lusis NN (2 dense layers + 1
activation layer)

Confusion Matrix
Actual

Fraud Non Fraud

Predicted
Fraud 11303 181

Non Fraud 208 110349

Explainability

8

Explainability - Concept
Explainability: Motivated by the opaqueness of so called “black‐box”
approaches it is the ability to provide an explanation on why a machine
decision has been reached.

9

Goal of Explainability

10

Goal of Explainability

11

Approaches for explainability

12

There are 4 main ways to explain an AI model :

- Input Attribution : Explain a model using the input features and
attributing a weight to each feature (LIME, SHAP, Integrated Gradients)

- Concept testing/extraction : Extracting information from the internal state
of a model

- Example influence/matching : Using significant example sets to explain a
model

- Distillation : Learn an explainable model (ex: Decision Tree) from a black
box

Input attribution : LIME and SHAP
LIME and SHAP are methods used to explain the predictions of a black box
using a local approximation.

13

Input attribution : LIME and SHAP

14

LIME and SHAP explain the models by tweaking the input and modeling the
changes in prediction. This new input is still close to the original data point.

For example, if the model prediction does not change much by tweaking the
value of a variable, that variable for that particular data point may not be an
important predictor.

As a result, LIME and SHAP are model agnostic, which is important to compare
two different types of classifiers.

LIME

15

“Why Should I Trust You?”
Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin

Two different definitions of trust:

- Trusting a prediction : LIME (Local Interpretable Model-agnostic

Explanation)

- Trusting a model : SP-LIME (Submodular Pick - LIME)

16

https://arxiv.org/pdf/1602.04938.pdf
https://arxiv.org/pdf/1602.04938.pdf
https://arxiv.org/pdf/1602.04938.pdf

LIME
The criteria of LIME:

- Interpretable : The features used must be understood by humans

- Local fidelity : the explanation must be locally faithful to the model, even if

it is not globally faithful, which is not always possible

Advantages:

- Fast : LIME can provide real-time explanations

- Consistent : Sum of the impact of each feature is equal to the total impact

17

Drawbacks
- The local approximation is linear, which means

that the model cannot be explained if it is
highly non-linear.

- The representations may not be powerful
enough to explain some behaviors (example :
Sepia -> Retro)

- Random components may lead to different
explanations for same input

- It requires some tweaks to work on a
non-generic model

18

SP-LIME
SP-LIME evaluates trust in the model as a
whole.

The user will inspect a set of instances selected
during a step call the pick step, this inspection
will denote the global importance of that
component in the explanation space.

The set of instances has to be non-redundant
and achieves the highest coverage. The set
created, is called the submodular pick.

19

20

LIME - False positive

Random
Forest

Neural
Network

Implementation problem
Bug in LIME implementation when we changed the number of explicative
feature of the output (from 5 to 10 with the neural network)

21

SHAP

22

Shapley Values - SHAP

The SHAP explainer is based on Shapley values, which can be used in game
theory. For example, for a company with a set of three employees, the
Shapley values consider all the ways that adding each employee improved the
profit compared to not having those employees.

SHAP value is the contribution of a feature to the difference between the
actual prediction and the mean prediction.

Contrary to LIME, SHAP does not assume that the local model is linear, which
means that calculation is very time expensive as it checks all the possible
combinations.

23

SHAP pros and cons
The SHAP method has several advantages compared to other explainers:

● Like LIME, it is consistent : the sum of the individual impact is equal to
the total impact

● unlike LIME, it there is no linear approximation, so it is more stable and
accurate

However, the SHAP method is very time consuming.

The standard, model-agnostic method is implemented in KernelExplainer.
However, due to its long running time, optimized versions of SHAP have been
implemented.

24

SHAP for random forests
TreeExplainer is optimized for tree-based models.

We compute with the normalized discounted gain a 95% similarity for 100
explanations between TreeExplainer and KernelExplainer.

25Global feature importance for TreeExplainer Global feature importance for KernelExplainer

SHAP for neural networks
DeepExplainer is optimized for neural networks.

We compute with the normalized discounted gain a 48% similarity for 100
explanations between DeepExplainer and KernelExplainer.

26Global feature importance for DeepExplainer Global feature importance for KernelExplainer

SHAP KernelExplainer vs DeepExplainer

27

SHAP DeepExplainer

SHAP KernelExplainer

SHAP Explainers
● TreeExplainer optimisation is based on feature dependence properties

of tree-based models.

It is faster than KernelExplainer and the explanations are similar on the
model, so it is the best to use for random forests

● DeepExplainer is a combination of SHAP and DeepLift optimized for
Neural Network models.

DeepExplainer is faster than KernelExplainer, but the explanations are
different, so we analyze both further on the neural network

28

Computation time

29

LIME and SHAP algorithms
LIME and SHAP have 3 computation stages

- Creation of the explainer from training values
- Computation of the explanation for test examples
- Eventual plotting of the values

For LIME, we will plot the creation time of the explainer, as the computation
time is not evolving while changing parameters.

For SHAP, we will plot the computation time of the values, as it increases while
changing the parameters.

30

SHAP
SHAP computation has 3 stages :

- Creation of the explainer from training values
- Computation of the SHAP values for test examples
- Eventual plotting of the values

We will plot the computation time of the SHAP values, as the creation of the
explainer is very fast, and the plotting of the values is not recommended for a
large scale.

Explainers : TreeExplainer for Random Forests and DeepExplainer for NN.

31

LIME
LIME computation has 3 stages :

- Creation of the explainer from training values
- Computation of the explanation for the exemple
- Eventual plotting of the values

We will plot the creation time of the explainer, as the computation time is not
evolving while changing parameters, and the plotting of the values is not
recommended for a large scale.

32

Random Forests

33

The computation time of an instance does not increase with the size of the
test set for SHAP and LIME :

LIME mean computing time : 23 ms by instance

SHAP (TreeExplainer) mean computing time : 0.27 ms by instance

Parameters :

● Xtrain = 247780
● Xtest=122041
● max_depth=8
● split = 33%

Random Forests

34

Train dataset size
LIME Explainer

Tree depth
SHAP TreeExplainer

Neural Network

35

The computation time of an instance does not increase with the size of the
test set for SHAP and LIME :

LIME mean computing time : 1.6 s by instance

SHAP mean computing time : DeepExplainer : 70 ms by instance,
KernelExplainer : 3-6s by instance

Parameters :

● Xtrain = 247780
● Xtest=122041
● split = 33%
● features = 115

Number of features
The number of features is also to take into account :

For the neural network with usual parameters:

Using 22 features (without one hot encoding of categorical values)

→ Computing time by instance for SHAP DeepExplainer : 18 ms (vs 70 ms for
115 features)

→ Computing time by instance for LIME : 23 ms (vs 1.63 s for 115 features)

→ Creating time by instance for LIME : 2s (vs 11s for 115 features)

36

Usability of LIME and SHAP
● LIME computing time is constant for all the types of execution (except the

number of features for NN), while the creation time increases with the
training set size for both models.

● SHAP explainer creation time is constant, but the computing time
increases with the size of the model.

● SHAP TreeExplainer is faster than LIME with similar results
● SHAP DeepExplainer is faster than LIME but results are different
● SHAP KernelExplainer cannot be used for real time

37

Analyses

38

Predictions evaluation
Based on the rules RCS1 - RCS2 - RCB1 - RCB2 - RCB4 we created a score
between -1 and 1 to assess whether the explanation meets the criteria for the
creation of the fraud.

Random Forest :

39

Predictions evaluation
Neural network :

40

Here the result for the

Here the result for the

Comparison with a Decision Tree
A decision tree is an explainable model. We compared the decision path to the
explanation in order to score their similarity.

41

Conclusion

42

● SHAP seems to be more robust than LIME, and its repo

is much more active on Github

● Next steps in the study : To create an explainer

optimised for the neural network in order to have real

time explanation

43

Conclusion

Annexes

44

Annexes RF LIME : Confusion matrix

45

Vrai positif : 4 516

Faux négatif : 6 995

Faux positif : 253

Vrai négatif : 110 277

46

Annexes RF SHAP : Confusion matrix

Vrai positif
4 516

Faux positif
253

Faux négatif
6 995

Vrai négatif
110 277

Annexes NN LIME : Confusion matrix

47

Vrai positif : 11 303

Faux négatif : 208

Faux positif : 181

Vrai négatif : 110 349

48

Vrai positif
11 303

Faux positif
181

Faux négatif
208

Vrai négatif
110 349

Annexes NN SHAP : Confusion matrix

49

Back

