Chaire LUSIS -CentraleSupélec

Jeudi 16 janvier 2020

Historique

- 2004 :
 - Détection de fraude arbres de décision, réseaux bayésiens, HMM, SVM
- 2006:
 - Simulateur de paris boursiers en ligne théorie des jeux, espérance de gain
- 2014:
 - Apprentissage profond pour la détection de fraude
 - Théorie de Dempster-Shafer application à la prise de décision
- 2015 :
 - Apprentissage automatique pour la détection de fraude
 - Apprentissage automatique pour la prédiction de la durée de transport de marchandises

Historique

- 2017 :
 - Recommandation musicale Qobuz
 - Apprentissage profond pour la prédiction de marché
- 2018 :
 - Apprentissage automatique pour la détection de fraude
 - Chatbot pour domaine spécifique

Chaire - Moyens

- Durée 4 ans
- 3 enseignants-chercheurs CentraleSupélec rattachés au LRI (UMR8623)
 - Fabrice Popineau équipe LADHAK
 - Arpad Rimmel équipe GALAC
 - Bich-Liên Doan équipe A&O
- Equipe IA Lusis
 - Fabrice Daniel
 - Vincent Reinhard
 - Rosella Martino
 - François de la Bourdonnaye
 - Xavier Farchetto
- 2 thèses sous contrat CIFRE
- 3 contrats d'étude industrielle par an

Fraude

Axe de travail - Fraude

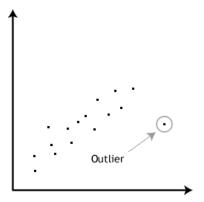
Fraude

- Perte sèche, en augmentation
 - En 2018, US\$ 24,26 109 perdus mondialement
 - Usurpation d'identité
- Eviter les faux positifs!
- Problème
 - de classification binaire
 - détection d'anomalie

£17 million stolen - biggest UK credit card fraud

In the mid 2000s, a gang of international fraudsters managed to steal the details of over 32,000 credit cards. They used this information to create clone credit cards and scam at least £17million over a period of several years.

Credit Card Fraud Detection



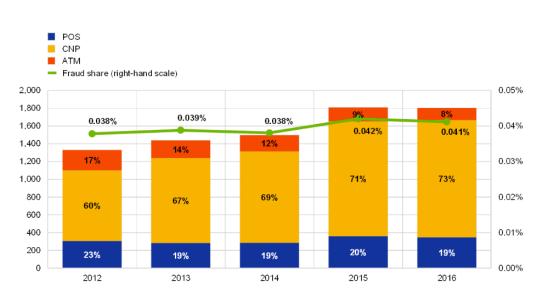
Axe de travail - Fraude

Part de la fraude

SEPA = Single Euro Payments Area

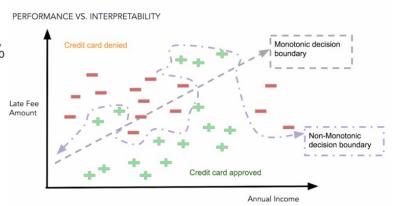
CNP = Card-Not-Present

POS = Point-Of-Sale



Fraude - Verrous

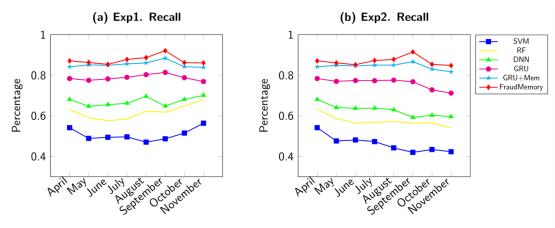
- Données déséquilibrées
 - Pourcentage de transactions frauduleuses < 0,5%
 - Difficulté d'accès à des datasets
- Détection en ligne en temps-réel
- Dérive conceptuelle et temporelle
 - Evolution des habitudes de consommation des clients
 - Etiquetage à retardement des cas de fraude
 - Nouvelles tactiques de fraude
- Explicabilité
 - RGPD : impose de fournir au client un motif de refus compréhensible par l'humain

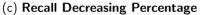


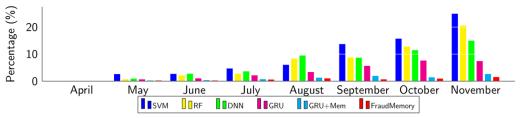
Fraude - Apprentissage automatique

Différentes techniques :

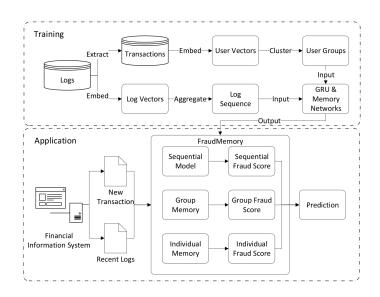
- SVM, DNN, GRU,
 Random Forests
- Rappel TP/(TP+FN)
- Dérive conceptuelle

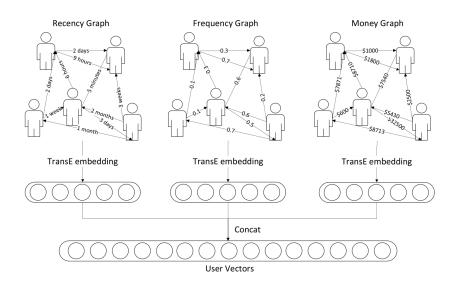






Fraude - Apprentissage automatique

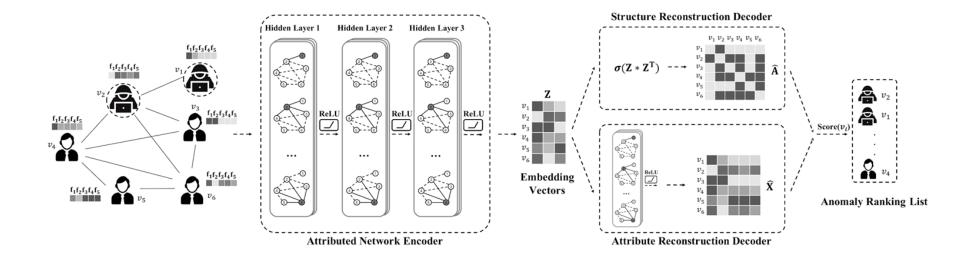




Architectures complexes

Robustesse des réseaux de neurones

Fraude - Réseaux attribués

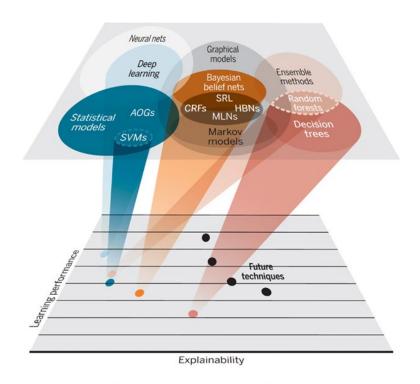


Fraude - Explicabilité

Les meilleures techniques d'apprentissage automatique sont des boîtes noires (+/-)

Exigence réglementaire : fournir une explication à l'utilisateur

Construire une explication à partir des éléments qui ont présidé à la décision



Performance vs. explainability

Fraude - Explicabilité

SHAP = SHapley Additive exPlanations.

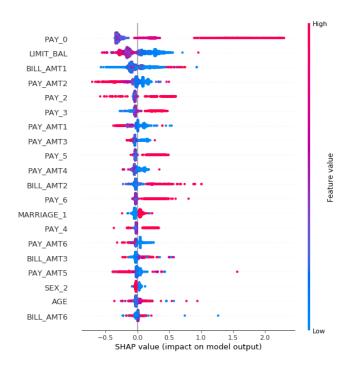
Explications locale + théorie des jeux

Calcule une importance pour chaque

Base rate = 0.1

caractéristique à l'origine d'une décision SHAP Output = 0.4Output = 0.4Age = $65 \longrightarrow$ Age = 65 $Sex = F \longrightarrow$ Sex = FModel Explanation $BP = 180 \longrightarrow$ BP = 180 BMI = 40 → BMI = 40

Base rate = 0.1



Trading

"It's one of the most difficult problems in applied machine learning,"
Ciamac Moallemi, professor at Columbia Business School

"Using machines to beat the markets is a really difficult challenge, But I don't think it's impossible."

Jon McAuliffe, professor at the University of California at Berkeley and chief investment officer at Voleon Capital Management LP

Source : Article Bloomberg, mai 2019

https://www.bloomberg.com/news/articles/2019-05-21/computer-models-won-t-beat-the-stock-market-any-time-soon

Problème difficile mais possible

Portefeuille de modèles sur les devises mis au point par Lusis

Approches peu satisfaisantes

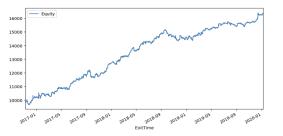
- sensibles aux conditions initiales
- non généralisables
- non transférable

Performance Report

	All	Long	Short
Net P&L	6,391.80	3,050.00	3,341.80
Gross Profit	27,939.50	10,163.50	17,776.00
Gross Loss	-21,547.70	-7,113.50	-14,434.20
Profit Factor	1.30	1.43	1.23
Total # of Trades	2,392.00	812.00	1,580.00
Number Winning Trades	1,289.00	440.00	849.00
Number Losing Trades	1,103.00	372.00	731.00
Percent Profitable	0.54	0.54	0.54
Avg Trade Win Loss	2.67	3.76	2.12
Avg Winning Trade	21.68	23.10	20.94
Avg Losing Trade	-19.54	-19.12	-19.75
Ratio Avg Win Loss	1.11	1.21	1.06
Largest Winning Trade	352.00	352.00	171.20
Largest Losing Trade	-189.70	-141.00	-189.70
Opened P&L	0.00	0.00	0.00

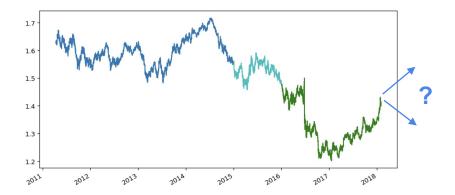
Performa	ance/Risk Metrics			
	slope	2.7164		

slope	2.7164	
r2	0.9493	
stderr	0.0128	
quality ratio	200.7603	
Max Drawdown	842.7	2018-11-21 00:00:00
Max Drawdown %	6.0 %	2018-11-21 00:00:00



Prévision des marchés financiers

- Grand nombre de publications
 - Google Scholar : 488 000 articles
 - souvent mises en échec ou inapplicables
- Problème
 - classification
 - régression

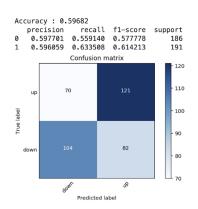


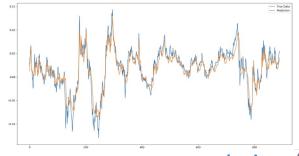
Classification

- Prédire une hausse/baisse à un horizon

Régression

 Prédire l'amplitude d'une variation à un horizon





Pourquoi les marchés financiers

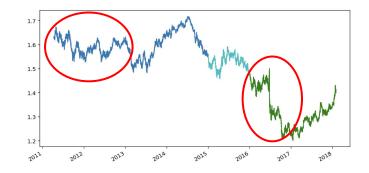
- couvre de multiples problèmes théoriques existant dans d'autres domaines
- immense variété d'approches applicables
- données abondantes facilement disponibles
- labels automatiques

Enjeu

- apport à tous les domaines aux comportements probabilistes
 - biologie/médecine, météorologie, sismologie, consommation d'énergie, économie, assurance, gestion de stocks

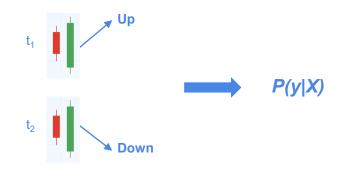
Domaine probabiliste

- Processus stochastiques non stationnaires
 - conditions changeantes au cours du temps (volatilité, acteurs, règles)



Domaine probabiliste

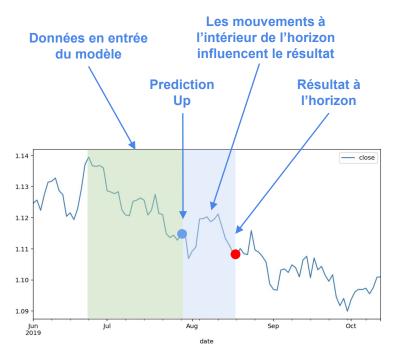
- Incertitude à la fois aléatoire et épistémique
 - facteur humain, information partielle, influences exogènes
 - variabilité des labels → **probabilité conditionnelle**



conditions identiques à deux instants différents, résultat différent

Influence des événements post prédiction

- Problèmes propres aux time series
 - les mouvements à l'intérieur de l'horizon influencent le résultat

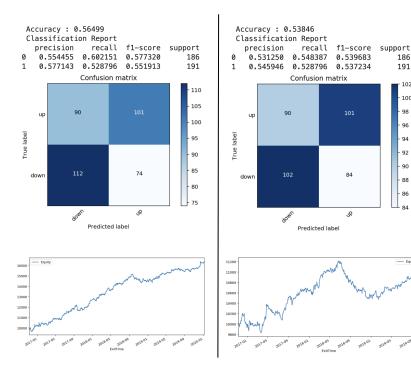


Sensibilité aux conditions initiales

- modification de seed
- quelques données différentes

Seed = 1000

Seed = 1001



191

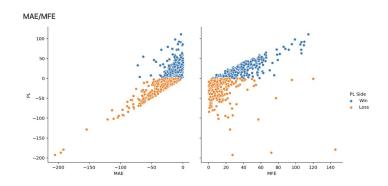
- 88

- 86

Inefficacité des métriques classiques

- Bonne métrique ≠ modèle exploitable
 - trajectoires et amplitudes variables à l'intérieur de l'horizon de prédiction

- Implique
 - backtesting
 - création de métriques spécifique



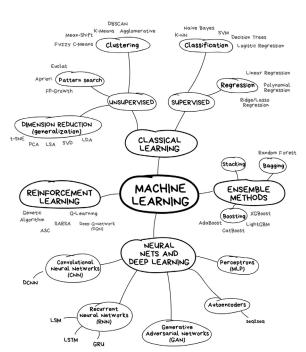
Performance/Risk Metrics

slope	2.7164	
r2	0.9493	
stderr	0.0128	
quality ratio	200.7603	
Max Drawdown	842.7	2018-11-21 00:00:00
Max Drawdown %	6.0 %	2018-11-21 00:00:00

$$QR=r^2rac{eta_1}{\sigma}$$

Trading - apprentissage automatique

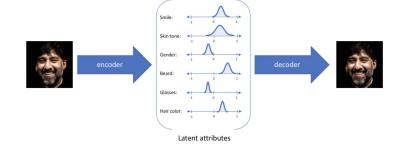
- Toute approche de machine learning
 - Random Forest, XGBoost
 - MLP, LSTM, CNN 1D, TCN, GAN
 - Deep learning probabiliste, VAE



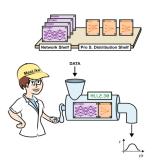
Trading - apprentissage automatique

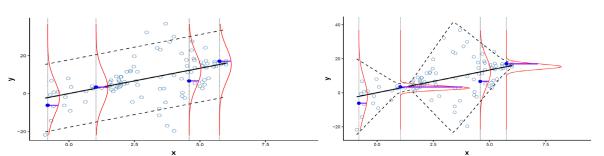
Les approches probabilistes

- VAE : extraction de features



Probabilistic Deep Learning Models





Résumé

Fraude

- Enjeu Thèse : explicabilité
- CEI/Lusis : support à l'enjeu direct, données déséquilibrées, dérive conceptuelle et temporelle

Trading

- Enjeu Thèse : prédiction dans un domaine probabiliste
- CEI/Lusis : support à l'enjeu direct, exploitabilité, backtesting, sensibilité aux conditions initiales

Kick-off!

Chaire - premiers travaux

- Novembre 2019 à mars 2020
 - Détection de fraude et explicabilité
 - Détection de fraude approches par graphes
 - Trading automatique
 - Constitution de playlists musicales (Qobuz)
- Proposition de sujets de stage de M2
- Rédaction des sujets de thèse
- Arrivée d'un nouveau partenaire associé

Le Futur

La collaboration CentraleSupelec / Lusis au delà de la chaire

Lors de CEI et/ou de thèse(s)

Sur les grands enjeux du Machine Learning

- Domaine probabiliste
- Encodage de raisonnements
- Apprentissage avec peu de données
- Travaux sur la robustesse

