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Anomaly Detection

Anomaly detection (AD) as a research direction has caught more and more
attention in the recent years:

Well-suited for applications where classes are imbalanced (e.g. fraud
detection, intrusion detection . . . etc.).
Effective for tasks where no labels are available.
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Contribution

In the present work we propose a novel Anomaly Detection method
based on influence measures which can serve to augment any deep
anomaly detection .
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What is Anomaly Detection ?
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Standard Supervised Approach to Classification

For the vanilla binary classification case one usually considers the following
set-up:

A training set Dtrain
n = {(xi, yi), xi ∈ X , yi ∈ {0, 1}}n

i=1 composed of
samples belonging to both classes, yi = 0 and yi = 1.
The goal is to directly learn a classifier using the training set

f : X → {0, 1}

H. Thimonier LISN, CentraleSupelec - Chaire Lusis 5 / 25



TracInAD: Measuring Influence for AD
What is Anomaly Detection ?

Anomaly Detection

Standard approaches to AD:
Training set Dtrain

n solely composed of normal samples.

Dtrain
n = {(xi, yi), yi = 0}n

i=1

where xi ∈ X ⊆ Rd, yi ∈ Y = {0, 1}.
Most AD methods aim at characterizing the distribution of the
normal samples (y = 0), Py=0.
Samples that belong to a low probability region of the normal
distribution are then flagged as anomalous (y = 1).
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Different types of AD

Three approaches to AD:
One-Class Classification e.g. OCSVM [Schölkopf et al. (1999)],
SVDD [Tax and Duin (2004)], Deep-SVDD [Ruff et al. (2018)].
Reconstruction-Based Methods e.g. VAE, Autoencoder, RaPP
[Kim et al. (2020)] . . . etc.
Self-Supervised Methods e.g. GOAD [Bergman and Hoshen
(2020)], NeutralAD [Qiu et al. (2021)], Internal Contrastive Learning
methods [Shenkar and Wolf (2022)].

Our approach can serve to augment any deep methods from all three
categories.
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Set-Up

Consider the following set-up:
Consider fθ a deep model parametrized by θ ∈ Θ ⊆ Rp.
Parameters θ are obtained by minimizing a loss function
ℓ : Θ × X → R over the training set.

θ∗ = arg min
θ∈Θ

∑
x∈Dtrain

ℓ(θ, x).
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Influence (1)

Definition (Influence)
The influence of a sample x on a test sample x′ is the difference in the
loss for the sample x′ incurred by having included x in the training set.
Formally, the influence function of a sample x on the test sample x′ is:

IF (x, x′) = ℓ(θ, x′) − ℓ(θ−x, x′) (1)

where θ−x = arg minθ∈Θ
∑

z∈Dtrain\{x} ℓ(θ, z).
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Influence (2)

Influence was first proposed for explicability purposes.
It allows to identify the samples which contributed to reducing the
loss of a sample and those that contributed to increasing its loss.
It can help understand why some samples were misclassified,
especially for image datasets.
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TracIn, Pruthi et al. (2020)

Based on a first-order approximation, Pruthi et al. (2020) propose TracIn,
a novel estimation of the Influence function given in (1).

Parameters θ are obtained by minimizing a loss function through an
iterative optimization process.
Optimizer: SGD with step size ηt at iteration t.
θt denotes the obtained parameters after iteration t.
Bt a minibatch of size b at iteration t.
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TracIn, Pruthi et al. (2020)

TracIn
The influence of sample x on sample x′ is estimated by

TracIn(x, x′) = 1
b

∑
t:x∈Bt

ηt∇ℓ(θt, x) · ∇ℓ(θt, x′) (2)

where ∇ℓ(θt, x′) denotes the gradient of the loss function evaluated for
the sample x′ w.r.t. the parameter θt.
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TracInAD (1)

In an unsupervised set-up involving β-Variational Autoencoders, Kong
and Chaudhuri (2021) show that the self-influence behaviour differs
between normal samples and anomalies.

Hypothesis
Not only do self-influence behaviours differ between normal samples and
anomalies, but the influence of normal points on anomalies should
significantly differ from the influence of normal points on normal
points.
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Intuition
On average, normal samples should have a positive influence on other
normal samples (i.e. help reduce the loss).
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Intuition
on the contrary, on average, normal samples should have a negative
influence on anomaly samples (i.e. contribute to increase the loss).
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TracInAD (2)

Consider the following procedure:
Train a deep AD model using only normal samples.
In inference, the anomaly score is the average influence of a
subsample of the training set.
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TracInAD (3)

Formally:
Consider fθ a deep AD model parametrized by θ ∈ Θ ⊆ Rp.
{t1, . . . , tk} checkpoints at which parameters are saved (e.g. one
epoch).
TracInCP(x, x′) =

∑k
i=1 ηti∇ℓ(θti , x′) · ∇ℓ(θti , x) a more

computationally efficient influence estimation.
Bt a random subsample of the training set of fixed size m.
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TracInAD (4)

TracInAD
The anomaly score for sample x′ is set as

TracInAD(x′) = 1
m

∑
x∈Bt

TracInCP(x, x′)

= 1
m

∑
x∈Bt

k∑
i=1

ηi∇ℓ(θti , x) · ∇ℓ(θti , x′)
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Experiments

We experiment on 4 baseline tabular datasets with a
reconstruction-based AD method based on a VAE. We obtain
competitive results on several datasets.
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Conclusion (1)

We proposed a novel method which:
Includes influence measures.
Can be applied on any deep AD method.
Shows competitive results with SOTA methods.
But displays however higher standard deviation.
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Conclusion (2)

A few questions still remain:
Are there other ways to aggregate the influence scores ? (e.g. max
instead of the mean)
How much is TracInAD affected by contaminated data (i.e. presence
of anomalies in the training set) ?

H. Thimonier LISN, CentraleSupelec - Chaire Lusis 21 / 25



TracInAD: Measuring Influence for AD
Conclusion

Thank you for your attention !
Questions ?

For more details please visit: https://arxiv.org/abs/2205.01362
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