CentraleSupélec

Comparative Evaluation of Anomaly Detection Methods for Fraud Detection in Online Credit Card Payments

Hugo Thimonier¹, Fabrice Popineau¹, Arpad Rimmel¹, Bich-Liên Doan¹ and Fabrice Daniel²

¹ Université Paris-Saclay, CNRS, CentraleSupélec, Gif-sur-Yvette ²LUSIS AI, Paris

Context

- Credit card fraud cost **\$28.58 billion** in 2021 (Nilson Report).
- Traditional **rule-based fraud detection is costly** and requires continuous expert updates.
- Gradient Boosted Decision Trees (GBDT) are the top-performing models for tabular data.
- Anomaly detection methods emerge as a distinct class of algorithms designed to address the challenge of fraud detection.

What is anomaly detection ?

Vanilla binary classification case:

• Training set composed of samples belonging to both classes, $y_i = 0$ and $y_i = 1$:

$$D_n^{train} = \{(x_i, y_i), x_i \in \mathcal{X}, y_i \in \{0, 1\}\}_{i=1}^n$$

• The goal is to directly learn a classifier using the training set

$$f: \mathcal{X} \to \{0, 1\}$$

Fraud Approach: Supervised or **Anomaly Detection?**

Construct a decision frontier using both normal samples and anomalies

distribution regardless of anomalies x_2 x_2 \mathcal{X}_1 x_1 •Normal sample •Known anomaly • Unseen anomaly

Anomaly Detection:

Characterization of the *normal*

Comparative Evaluation

Let's compare LightGBM, a supervised learning approach, against anomaly detection methods.

Distribution shift

- Due to the Covid-19 pandemic, **consumption and payment behaviors** changed between the pre and post-Covid era.
- Hence, our dataset displays a **distribution shift** between the 2018-2019 and 2020-2021 periods

T-SNE	UMAP	T-SNE	UMAP
	6 3		2018-2019

Standard approaches to AD:

• Training set D_n^{train} solely composed of *normal* samples:

$$D_n^{train} = \{(x_i, y_i), y_i = 0\}_{i=1}^n$$

where $x_i \in \mathcal{X} \subseteq \mathbb{R}^d, y_i \in \mathcal{Y} = \{0, 1\}.$

• Most AD methods aim at characterizing the distribution of the *normal* samples (y = 0), $\mathbb{P}_{y=0}$.

Anomaly detection

Learns the distribution of **normal transactions** rather than explicitly classifying fraud cases.

Experiment

- **Real-life credit card payment** dataset made available to by a large french bank
- Frauds represents less than 1% of total **480 million transactions**
- We restrict our analysis to **two countries** (Country A and B) in which payments were made.

Figure: Country A

Figure: Country B

Conclusion

- While AD methods appear as good alternatives to standard supervised classification methods, when confronted with real-life settings, all tested AD methods perform poorly
- We do observe a severe degradation of performance between both period: distribution shift does hinder the performance

Supervised or Anomaly Detection?

For real-world datasets, supervised learning approaches, such as Light-GBM, continue to outperform anomaly detection methods.